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1. Introduction

In studying AdS/CFT correspondence, it is an interesting subject to examine the duality

at the regions in which the state is highly excited to the extent that the backreactions in

the gravity side are not negligible. In this sense, recent developments in the analysis of

BPS geometries in supergravity theories are important as possible sources of information,

and those results deserve to be studied in more details. In [1], by analyzing the BPS

condition in IIB supergravity, a class of 1
2 BPS geometries with SO(4)×SO(4)×R symmetry

were concisely written in terms of one function on a three-dimensional subspace and one

differential equation imposed on that function was obtained so that the geometries were

classified by the boundary conditions on a two-dimensional plane.

After this work, several works have been done to treat more general situations ([2 – 7]).

Among them we concentrate on the result of [5], in which the case of SU(2)×U(1)×SO(4)×
R symmetry was studied and as a result, a class of 1

8 BPS geometries were written in terms

of four functions and four differential equations for them have been found. One of the

tasks left to be done is to exhaust the constraints for the controlling functions coming from

the BPS condition and the equations of motion so that they form a framework to produce

solutions of the supergravity with the above symmetries. Another is to find implications

for the dual field theories which may arise as a result of these analyses on the gravity sides.

In this paper, to contribute in these directions, we report some new facts about the

geometries considered in [5]. First we find that the differential equations obtained in [5] are

not sufficient to exclude all the geometries which does not solve the supergravity equations

of motion and present an additional differential equation which should be imposed on the

four controlling functions. Second we find a restricted class of geometries in which the four

functions and the five differential equations reduce to two functions and two differential

equations. We pick up all the remaining constraints imposed by the BPS condition and

the equations of motion for this class of geometries and find that one of the two controlling
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functions must be constant. The differential equation imposed on the remaining function

becomes a Liouville equation having its cosmological constant as a free parameter and

all the geometries which correspond to solutions of that equation are locally equivalent

to the near horizon geometries of intersecting D3-brane systems. Thus one of the above

mentioned tasks is completed in this restricted case. In this second part, the roles of the

new differential equation are very crucial. We also argue on the T-duality transformation

to D1-D5 system and possible future directions.

Apart from the discovery of the new differential equation for the general geometries

in the first part, the restriction we consider in the second part eliminates perhaps most

informative geometries, that is, asymptotically AdS5 × S5 geometries. Nevertheless we

consider that the appearance of geometries with another asymptotics should be considered

as an important property because in some sense it relates two class of geometries with

different asymptotics. If this relation is interpreted as a relation between the dual CFTs,

we obtain a strong support for AdS/CFT correspondence in backreacted region.

This paper is organized as follows. In section 2 we review the analysis of [5] and

explain how the new differential equation appears. In section 3 we take a limit which

reduces the expressions for the geometries to simple forms, exhaust the constraints for

them and exhibit the roles of the new differential equation. In section 4 we discuss the

possibilities for applying our result.

2. 1/8 BPS geometries with SU(2) × U(1) × SO(4) × R

The purpose of this section is to examine the result of [5] and point out the existence of an

additional constraint (2.46). We start with a review of the analysis in [5], as the derivation

of (2.46) is related to its details.

Setup. In [1], a class of type IIB 1
2 BPS geometries consisting of the metric and five-

from flux with SO(4) × SO(4) × R symmetry has been obtained through the procedure

in which two S3s were set in the starting ansatz and the Killing spinor equation was

analyzed leading to the result that a timelike Killing vector was found and constraints for

the other components of the geometry were picked up. In [5], that analysis was extended to

SU(2)×U(1)×SO(4)×R case. The basic idea is that we replace one of the S3s in [1] with

a squashed S3 to break the SU(2)R in the isometry group SO(4) = SU(2)L ×SU(2)R of S3.

The ansatz for the SU(2)L ×U(1)× SO(4) symmetric metric and five-form flux is given by

ds2 =gµνdx
µdxν + ρ2

1

[

σ2
1̂

+ σ2
2̂

]

+ ρ2
3

(

σ3̂ −Aµdx
µ
)2

+ ρ̃2dΩ̃2
3 (2.1)

F5 = −
(

Gµ̄ν̄e
µ̄ ∧ eν̄ ∧ e¯̂1 ∧ e¯̂2 ∧ e¯̂3 + ∗4Ṽ ∧ e¯̂1 ∧ e¯̂2 + ∗4g̃ ∧ e

¯̂3
)

+
(

G̃µ̄ν̄e
µ̄ ∧ eν̄ + Ṽµ̄e

µ̄ ∧ e¯̂3 + g̃e
¯̂1 ∧ e¯̂2

)

∧ ρ̃3dΩ̃3. (2.2)

Here µ, ν take values 0,1,2,3, and gµν , ρ1, ρ3, ρ̃, Aµ, Gµν , G̃µν , Ṽ , g̃ depend only on the four-

dimensional coordinate xµ. σîs are the left-invariant 1-forms used for building the metrics
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of squashed three-spheres. The explicit forms of them are

σ1̂ = −1

2

(

cos ψ̂dθ̂ + sin ψ̂ sin θ̂dφ̂
)

σ2̂ = −1

2

(

− sin ψ̂dθ̂ + cos ψ̂ sin θ̂dφ̂
)

σ3̂ = −1

2

(

dψ̂ + cos θ̂dφ̂
)

(2.3)

(see appendix A for notations related to the symmetry). eµ̄,ν̄ , e
¯̂1,¯̂2,¯̂3 are the vierbein 1-forms

with their indices in the respective tangent subspaces. We take e
¯̂1,¯̂2,¯̂3 to be of the forms

associated with σ1̂,2̂,3̂ :

e
¯̂1,¯̂2 = ρ1σ1̂,2̂, e

¯̂3 = ρ3

(

σ3̂ −A
)

.

∗4 is the Hodge dual in the four-dimensional subspaces described by the first term in the

metric. dΩ̃2
3 is a metric of S3 and dΩ̃3 is its volume form. Because we have set the coef-

ficient of σ2
1̂
, σ2

2̂
equal, the translation of ψ̂ gives the extra U(1) symmetry. The five-form

F5 must satisfy two constraints. One is the self-duality relation, that is F5 = ∗F5, which

in our ansatz reduces to

G2 = ∗4G̃2. (2.4)

The other is the Bianchi identity dF5 = 0.

Supersymmetry requires the existence of a Killing spinor η the conditions for which

are the Killing spinor equation

∇Mη +
i

480
F

M1M2M3M4M5
ΓM1M2M3M4M5ΓMη = 0 (2.5)

and the chirality condition Γ11η = η where Γ11 ≡ Γ0̄ · · ·Γ9̄. To analyze these conditions,

we decompose the Dirac matrices in ten dimensions as follows.

Γµ̄ = γµ̄ ⊗ 1 ⊗ 1 ⊗ 1 ⊗ 1, Γ
¯̂a = γ5 ⊗ τâ ⊗ 1 ⊗ τ̂1, Γ

¯̃a = γ5 ⊗ 1 ⊗ τã ⊗ τ̂2. (2.6)

Here γµ̄s are the Dirac matrices in four dimensions, the chirality matrix in this subspace is

defined as γ5 = −iγ0γ1γ2γ3 and τâ, τã, τ̂1,2 are Pauli matrices. We consider Killing spinors

of the correspondingly decomposed form

η = ǫ⊗ χ̂⊗ χ̃

where ǫ is a eight-component spinor on which the first and last components of each product

in (2.6) act. This decomposition reduces the chirality condition for η to

γ5τ̂3ǫ = ǫ. (2.7)

Moreover we restrict χ̂ to a constant eigenvector of τ3̂ and χ̃ to a Killing spinor on the S3:

τ3̂χ̂ = sχ̂, s = ±1

∇′
¯̃aχ̃ =

i

2
bτãχ̃, b = ±1

– 3 –
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where ∇′
ãs are the covariant derivatives in the unit radius S3. From this point we use µ, ν, . . .

to denote tensors with their indices raised or lowered by the metric of four-dimensional

subspace gµν . The Killing spinor equation (2.5) is expressed as follows.

[

∇′
ρ −

1

4
sρ3Fρνγ

νγ5τ̂1 + isAρ −
(

1

4
G̃µνγ

µν +
1

2
sṼµγ

µγ5τ̂1 +
i

2
sg̃

)

γ5τ̂2γρ

]

ǫ = 0 (2.8)

[

i

2

ρ3

ρ1
γ5τ̂1 +

1

2
6 ∂ρ1 + ρ1

(

1

4
G̃µνγ

µν +
1

2
sṼµγ

µγ5τ̂1 −
i

2
sg̃

)

γ5τ̂2

]

ǫ = 0 (2.9)

[

i

2

(

2− ρ2
3

ρ2
1

)

γ5τ̂1+
1

2
6 ∂ρ3+

1

8
sρ2

3Fµνγ
µνγ5τ̂1+ρ3

(

1

4
G̃µνγ

µν− 1

2
sṼµγ

µγ5 τ̂1+
i

2
sg̃

)

γ5τ̂2

]

×ǫ = 0 (2.10)
[

i

2
bγ5τ̂2 +

1

2
6 ∂ρ̃− ρ̃

(

1

4
G̃µνγ

µν +
1

2
sṼµγ

µγ5τ̂1 +
i

2
sg̃

)

γ5τ̂2

]

ǫ = 0 (2.11)

where ∇′
µs are the covariant derivatives in the four-dimensional slice and Fµν ≡ ∂µAν−∂νAµ

(we will denote this two-form as F2 in many other places in this paper).

Analysis of the conditions. To extract constraints for the metric and five-form flux

from the conditions for supersymmetry, we use real spinor bilinears

Kµ = ǭγµǫ, Lµ = ǭγ5γµǫ, Yµν = ǭγµν τ̂1ǫ, f1 = iǭτ̂1ǫ, f2 = iǭτ̂2ǫ (2.12)

where ǭ ≡ ǫ†γ0̄. Using Fierz rearrangements, we can show that

K2 = −L2 = −f2
1 − f2

2 , K · L = 0. (2.13)

From the reduced Killing spinor equations (2.8), (2.9), (2.10) and (2.11), we can deduce

various constraints for the components in (2.1), (2.2). One of them is

L = −ρ1f1

ρ3ρ̃
dy

where y ≡ ρ1ρ̃. Thus, regarding y as a coordinate, we see that Ly is the only non-vanishing

component of L. Another constraint is

∇′
µKν = −Gµνf2 + G̃µνf1 −

ρ3

2
Fµνf2s+ ǫµνρσK

ρV σs− g̃Yµνs. (2.14)

From this we see that Kµ is a Killing vector and hence it is possible to introduce a coordi-

nate t such that Kµ∂µ = ∂t. Using the remaining two coordinate degrees of freedom, the

metric of the four-dimensional subspace which respects (2.13) reduces to

ds24 = − 1

h2
(dt+ Vidxi)

2 + h2 ρ
2
1

ρ2
3

(

δ̄i j̄ ẽ
ī

i ẽ
j̄

j dxidxj + dy2
)

where i, j take values 1, 2, and h−2 = f2
1 + f2

2 .

Further investigations of (2.5) show that ρ1, ρ3, ρ̃ are t-independent and that all the

spinor bilinears defined in (2.12) and all the components of the five-form flux and F2 can be
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written in terms of ρ1, ρ3, ρ̃,Kµ, At and the Levi-Civita symbol ǫµνρσ. For later convenience

we present here the results of f1, f2, Ṽ and F2.

f1 =ρ̃, f2 = ρ3 (c+ sAt) , Ṽ =
s

4

1

ρ3ρ̃3
d
(

bρ2
1ρ̃

2 − ρ3ρ̃
2f2

)

,

Fµν = − 2s

ρ3(f2
1 + f2

2 )

[(

2 − ρ2
3

ρ2
1

)

1

ρ3
ǫ ρσ
µν KρLσ +

b

ρ̃
(KµLν −KνLµ)

+ f1ǫ
ρσ

µν Kρ∂σ ln (ρ3ρ̃) + f2 (Kµ∂ν ln (ρ3ρ̃) −Kν∂µ ln (ρ3ρ̃))

+2sf1

(

KµṼν −Kν Ṽµ

)

− 2sf2ǫ
ρσ

µν KρṼσ

]

(2.15)

where c is an integral constant of the differential equation for f2. In solving the differential

equation for f1, noting that the sign of f1 is flipped by the redefinition ǫ → τ̂3ǫ without

the chirality condition (2.7) affected, we have set f1 positive, and in solving the differential

equation for f2, noting that Fµν is t-independent, we have chosen a gauge in which Aµ is

t-independent. We now set Ay = 0 by using the remaining gauge degrees of freedom.

Next we consider the constraints for the eight-component spinor ǫ. We have three

projection conditions and hence one complex degrees of freedom is left for ǫ. The first pro-

jection is the chirality condition (2.7). The second comes from the relative normalization of

K0̄ and L3̄,
1 and the third comes from the sum of (2.9) and (2.11) divided by ρ1,ρ̃ respec-

tively. To express these conditions in a simple way, we use a spinor ǫ0 ≡ f
−1/2
2 e−iδγ5γ3τ̂1ǫ

where δ is defined by sinh 2δ = f1/f2. The results are

γ5τ̂3ǫ0 = ǫ0, γ1̄γ2̄ǫ0 = −iǫ0, γ3̄τ̂1ǫ0 = ǫ0 (2.16)

and the normalization of ǫ0 is given by ǫ†0ǫ0 = 1. Let us take an explicit representation of

the Dirac matrices

γ0̄ = i

(

1

1

)

, γ1̄ =

(

τ1
−τ1

)

, γ2̄ =

(

τ2
−τ2

)

, γ3̄ =

(

τ3
−τ3

)

(2.17)

where τ1,2,3 are Pauli matrices. Then the solution of (2.16) is

ǫ0 ∝





























0

1

0

i

0

−1

0

i





























(2.18)

1Throughout this paper we take the vierbein of the four-dimensional subspace as its non-vanishing

components are given by

e 0̄

t =
1

h
, e 0̄

xi
=

Vi

h
, e j̄

xi
= h

ρ1

ρ3

ẽ j̄
i , e 3̄

y = h
ρ1

ρ3

.
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where we have expressed the components of the spinor in a manner that the Dirac matri-

ces (2.17) act on the four elements in each block and τ̂1,2,3 act on the two blocks.

In addition to the bilinears defined in (2.12), we can define another type of bilinears

by transposing the spinors. Note that

i√
2

(τ̂2 + τ̂3) ǫ0 ∝ i− 1√
2





























0

1

0

1

0

1

0

−1





























. (2.19)

We can remove the phase factor of this expression by a phase shift or a local Lorentz rotation

generated by γ1̄γ2̄. Calling this factor eiλ, we obtain a spinor ǫ′0 ≡ e−iλ i√
2
(τ̂2 + τ̂3) ǫ0 with

the following properties.

ǫ
′t
0 ǫ

′
0 = 1, γ5τ̂2ǫ

′
0 = ǫ′0, γ1̄γ2̄ǫ

′
0 = −iǫ′0, γ3̄τ̂1ǫ

′
0 = −ǫ′0. (2.20)

We now define non-vanishing spinor bilinears2

ωµ = ǫ
′tγ2̄γµǫ

′, W 1
µν = ǫ

′tγ2̄γµν τ̂1ǫ
′, W 3

µν = ǫ
′tγ2̄γµν τ̂3ǫ

′

where ǫ′ ≡ e−iδγ5γ3τ̂1f
1/2
2 ǫ

′

0

(

= ie−iλ (σ̂2 + σ̂3) ǫ/
√

2
)

. From the Killing spinor equa-

tion (2.5), we obtain

∂µων − ∂νωµ =
1

ρ3

(

2 − ρ2
3

ρ2
1

)

W 3
µν +

(

2b

ρ̃
− ρ3

ρ̃ρ2
1

f2

)

W 1
µν

+
1

ρ3ρ̃
[ωµ∂ν (ρ3ρ̃) − ων∂µ (ρ3ρ̃)] − 2is (Aµων −Aνωµ) . (2.21)

The (y, xi) component of this relation implies that

∂y

(

iẽ 1̄
i + ẽ 2̄

i

)

= D
(

iẽ 1̄
i + ẽ 2̄

i

)

where

D = h2

[

2
ρ1ρ̃

ρ2
3

− 2
ρ̃

ρ1
+ f2

(

2
bρ1

ρ3ρ̃
− 2

f2

ρ̃ρ1

)]

.

2The rotation by Pauli matrices in (2.19) is important in defining ωµs. Note that the chirality condition

γ5τ̂3ǫ = ǫ gives

ǫtγ2̄γµ̄ǫ = −ǫtγ2̄γ5γµ̄τ̂3ǫ.

In our representation of Dirac matrices (2.17), γ2̄ is antisymmetric and the others are symmetric and hence

γ2̄γ5γµ̄ is anti-symmetric. This implies that the above bilinears must vanish. In contrast, the rotation (2.19)

changes the chirality condition to the second expression in (2.20) and for this reason we have non-vanishing

components of ω.

– 6 –
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From this it turns out that, performing a y-independent coordinate transformation for

x1, x2, we can set the metric of (x1, x2) space proportional to δij . Therefore the metric of

the four-dimensional subspace reduces to

ds24 = − 1

h2
(dt + Vidxi)

2 + h2 ρ
2
1

ρ2
3

(

T 2(x, y)
(

dx2
1 + dx2

2

)

+ dy2
)

(2.22)

where T satisfies a differential equation

∂y lnT = D. (2.23)

The (x1, x2) component of (2.21) implies that

sAi = (sAt + c− b)Vi +
1

2
ǫij∂j lnT (2.24)

and the (t, xi) components of (2.21) imply that c = b.

Assembling the above results, we can write the components of the metric and five-form

flux in a concise way. To do that we introduce three functions m,n, p which are defined by

ρ4
1 =

mp+ n2

m
y4, ρ4

3 =
p2

m(mp+ n2)
, At = bs

n− p

p
. (2.25)

We can see that all the components in (2.1), (2.2) are expressed in terms of m,n, p and T .

The easiest to see is

D = 2y

(

n+m− 1

y2

)

. (2.26)

Eq. (2.14) determines the metric component V as follows.

dV = by ∗3

[

dn+

(

nD + 2ym(n− p) +
2n

y

)

dy

]

. (2.27)

Here ∗3 is the Hodge dual in the three-dimensional subspaces spanned by x1, x2 and y, the

metric for which is given by the expressions inside the bracket of the second term in (2.22).

From the Bianchi identities for F5, it turns out that the following two forms are closed and

hence it is possible to define the potentials for them.

ρ2
1ρ3G2 = d(Bt(dt + V ) + B̂)

ρ̃3G̃2 +
1

2
g̃ρ2

1ρ̃
3F2 = d(B̃t(dt + V ) + ˆ̃B).

As we mentioned above (2.15), the fluxes are expressed by other degrees of freedom. Using

those expressions, we obtain

Bt = b
y2

4

n

m
, dB̂ =

y3

4
∗3 [dp+ 4yn(p− n)dy]

B̃t =
y2

4

n− 1
y2

p
, d ˆ̃B = b

y3

4
∗3 [dm+ 2mDdy] . (2.28)

Thus we have succeeded in writing all the components of the metric and five-form flux in

terms of the four function m,n, p, T .

– 7 –
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Actually there are constraints other than the one that the geometry is expressed by

m,n, p and T in the above way. One is (2.23). We can find constraints also from the

integrability of the expressions for dV, dB̂ and d ˆ̃B

ddV = 0 (2.29)

ddB̂ = 0 (2.30)

dd ˆ̃B = 0. (2.31)

Explicit forms of these differential equations are given later in this section.

The analysis to this point is essentially included in [5]. Since we have four differential

equations for four functions m,n, p, T , we see that the whole dependence of the metric and

the flux on the coordinates is determined (at least locally) by the boundary conditions for

these functions on a plane in the x1x2y space, which is a generalization of the result in [1]

where we had one function and one differential equation imposed on it.

New constraint. However, we point out here that an additional constraint must be

imposed on m,n, p and T so that the allowed solutions are more restricted. Note that (2.24)

determines Ai with respect to m,n, p and T , and recall that we have obtained (2.15)

before and that equation determines the field strength F2 ≡ dA in terms of m,n, p and T .

Explicitly, from (2.15) we obtain

F =−bs (dt+V )∧ d
(

n

p

)

−s
2
∗3

[(

4m−
(

n2+mp
)

(4n+8m)

p
y2

)

dy− 2n

p
ydn−2ydm

]

. (2.32)

This must coincide with the expressions for Fyi, Fij obtained by differentiating (2.24),

that is

Fyi = ∂y (AtVi) +
s

2
ǫij∂j∂y lnT

= bs∂y

(

n

p

)

Vi + s
n− p

p
yǫij∂jn+

s

2
ǫij∂j

[

2y

(

n+m− 1

y2

)]

F12 = ∂1 (AtV2) − ∂2 (AtV1) +
s

2

(

−∂2
1 − ∂2

2

)

lnT

= bs∂1

(

n

p

)

V2 − bs∂2

(

n

p

)

V1+s
n−p
p

yT 2

(

nD+2ym(n−p)+ 2n

y

)

− s

2

(

∂2
1 +∂2

2

)

lnT

where we have used (2.25), (2.26) and (2.27). The comparison for Fyi gives no new

information. The comparison for Fij gives a new constraint

1

2

(

∂2
1 +∂2

2

)

lnT =−T 2y∂yn−T 2y∂ym+2T 2
(

m−2m2y2−4mny2−n2y2+mpy2
)

. (2.33)

One might suspect that (2.33) can be derived from (2.23), (2.29), (2.30), (2.31) and is not

a new constraint. In section 3, we will exclude this possibility by presenting a solution

for (2.23), (2.29), (2.30), (2.31) which does not solve (2.33) (see below (3.2)).
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Summary. Here we summarize the result of this section. In the remainder of the paper,

we set b = s = 1. The expressions for the metric and the five-form flux are

ds2 = −h−2 (dt+ Vidxi) + h2 ρ
2
1

ρ2
3

(

T 2
(

dx2
1 + dx2

2

)

+ dy2
)

+ ρ̃2dΩ̃2
3 (2.34)

+ρ2
1

(

σ̂2
1 + σ̂2

2

)

+ ρ2
3

(

σ̂3 −Atdt−Aidx
i
)2

F5 = −
(

Gmne
m ∧ en ∧ e1̂ ∧ e2̂ ∧ e3̂ + ∗4Ṽ ∧ e1̂ ∧ e2̂ + ∗4g̃ ∧ e3̂

)

(2.35)

+
(

G̃mne
m ∧ en + Ṽme

m ∧ e3̂ + g̃e1̂ ∧ e2̂
)

∧ ρ̃3dΩ̃3.

h2 and the components of the five-form are expressed by ρ1, ρ3, ρ̃, V,A (or its field strength

F2 ≡ dA),Bt, B̂, B̃t and ˆ̃B.

h−2 = ρ̃2 + ρ2
3 (1 +At)

2

g̃ =
1

2ρ̃

(

1 − ρ2
3

ρ2
1

(1 +At)

)

Ṽ =
1

2ρ3ρ̃3
d
(

g̃ρ2
1ρ̃

3
)

ρ2
1ρ3G = d(Bt(dt + V ) + B̂)

G̃ρ̃3 = −1

2
g̃ρ2

1ρ̃
3F2 + d(B̃t(dt+ V ) + ˆ̃B). (2.36)

The remaining degrees of freedom are further reduced to m,n, p and T by the following

relations.

ρ4
1 =

mp+ n2

m
y4, ρ4

3 =
p2

m(mp+ n2)

ρ̃4 =
m

mp+ n2
, At =

n− p

p
(2.37)

dV = y ∗3

[

dn +

(

nD + 2ym(n− p) +
2n

y

)

dy

]

(2.38)

Ai = AtVi +
1

2
ǫij∂j lnT (2.39)

Bt =
y2

4

n

m
, dB̂ =

y3

4
∗3 [dp+ 4yn(p− n)dy] (2.40)

B̃t =
y2

4

n− 1
y2

p
, d ˆ̃B =

y3

4
∗3 [dm+ 2mDdy] , (2.41)

where D = 2y(m+ n− 1/y2). We have five differential equations for m,n, p, T

y3
(

∂2
1 + ∂2

2

)

n+ ∂y

(

y3T 2∂yn
)

+ y2∂y

[

T 2
(

yDn+ 2y2m(n− p)
)]

+ 4y2DT 2n = 0 (2.42)

y3
(

∂2
1 + ∂2

2

)

m+ ∂y

(

y3T 2∂ym
)

+ ∂y

(

2y3T 2mD
)

= 0 (2.43)

y3
(

∂2
1 + ∂2

2

)

p+ ∂y

(

y3T 2∂yp
)

+ ∂y

[

4y3T 2ny(n− p)
]

= 0 (2.44)

∂y lnT=D. (2.45)

1

2

(

∂2
1 +∂2

2

)

lnT=−T 2y∂yn−T 2y∂ym+2T 2
(

m−2m2y2−4mny2−n2y2+mpy2
)

. (2.46)

– 9 –



J
H
E
P
0
9
(
2
0
0
8
)
1
0
0

((2.42), (2.43) and (2.44) are the explicit forms of (2.29), (2.30) and (2.31) respectively.)

We have written down many constraints derived from the Bianchi identity, the

self-duality relation and the Killing spinor equation, but it is uncertain whether we have

equivalently transformed those original constraints. Moreover we need to impose the

Einstein equation

Rµν =
1

6
FµαβγδF

αβγδ
ν (2.47)

on the above geometries. In the next section, we work on this issue for a restricted case

of m and n, and show that the above results are insufficient to produce solutions of the

supergravity with the symmetries required in the setup.

3. Deviation from LLM with D = 0, ρ1 = ρ3, and n fixed

The result in the previous section is a generalization of that in [1](LLM). A limit to LLM

solutions is given by ρ3 = ρ1, At = 0, T = const., in other words it is D = 0, n =

p, T = const. . . In this limit, all the degrees of freedom reduce to one function and the

differential equation imposed on it can be solved by integral forms for general bound-

ary conditions. However, in general case, although we have obtained differential equa-

tions (2.42), (2.43), (2.44), (2.45), (2.46) for the controlling functions m,n, p, T , it is far

more difficult to solve them or find physical implications from them. Therefore we seek

limits in which those equations reduce to tractable forms such that we can find meaningful

information from them.

One of the chief interests would be on the property of our geometries near LLM ansatz.

Paying attention to (2.37), we find that setting ρ1 = ρ3 almost gives another S3 metric but

this condition leaves two of the three degrees of freedom m,n, p. If we further set D = 0,

n− p is left as a deformation function for a special case of LLM. Expanding (2.37) in n− p
to the first order, we obtain

ρ4
1 ∼ ny4

1 − y2n
− y4(n− p)

ρ4
3 ∼ ny4

1 − y2n
− 1 + ny2

1 − ny2
y4(n− p).

Equating these two gives n = 0,m = 1/y2. This condition is sufficient to satisfy ρ1 = ρ3

to all order and therefore we concentrate on these continuously deviated LLM geometries

which have only two degrees of freedom p, T .3

In this case, the differential equations (2.42), (2.43), (2.44), (2.45), (2.46) are reduced to

simple forms. Eq. (2.43) and (2.45) are equivalent and both imply that T is y-independent,

T = T (x). Then (2.42) implies that p is also y-independent, p = p(x). and hence (2.44)

reduces to a Laplace equation in two dimensions

(

∂2
1 + ∂2

2

)

p(x) = 0. (3.1)

3For these geometries, n is fixed to 0 and p deviates from the LLM limit n = p = 0, but there is another

solution for ρ1 = ρ3, D = 0, in which n also deviates from 0 and p, n satisfy a constraint p−n = 2n/(y2n−2)

. In this paper, we do not investigate this case and leave it for a future work.
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Eq. (2.46) reduces to a simple but nonlinear equation

(

∂2
1 + ∂2

2

)

ln
(

T (x)2
)

= 8p(x)T (x)2. (3.2)

Now it is clear that (2.46) is independent from (2.42), (2.43), (2.44), (2.45). In our restricted

case, the constraints of (2.42), (2.43), (2.44), (3.1) are equivalent to the requirement that

p and T are y-independent and p satisfies (3.1), and hence they allow p and T to be

constant, but that does not satisfy (3.2). Thus we can say that (2.46) is independent

from (2.42), (2.43), (2.44), (2.45). Eq. (3.2) (in other words (2.46)) plays important roles

in the remainder of this paper.

The other expressions in the result of the previous section also reduced to simple forms.

We present some of them first. (2.38) becomes

dV = −2pT 2dx1 ∧ dx2. (3.3)

This equation for V can be solved by using (3.2). The solutions are given by

Vi =
1

4
ǫij∂j lnT 2 + ∂iα (3.4)

where the first term is a particular solution guaranteed by (3.2) and α is an arbitrary

function depending on x1, x2. The last expression in (2.37) reduces to At = −1, (2.39)

reduces to Ai = −∂iα, and hence F2 = 0.

Straightforwardly we obtain reduced expressions for the metric and five-form flux

ds2 = − 1√
p

(dt + V )2 +
√
p
(

T 2
(

x2
1 + x2

2

)

+ dy2
)

+
1√
p
dΩ̃2

3

+
√
py2

[

σ2
1̂

+ σ2
2̂

+
(

σ3̂ + dt+ ∂iαdxi

)2
]

(3.5)

F5 = −ρ2
1ρ3G2 ∧ σ1̂ ∧ σ2̂ ∧

(

σ3̂ + dt+ ∂iαdxi

)

− p

2
y2 ∗4 dy ∧ σ1̂ ∧ σ2̂ −

√
p

2
y ∗4 1 ∧

(

σ3̂ + dt+ ∂iαdxi

)

+

(

ρ̃3G̃2 +
y

2
dy ∧

(

σ3̂ + dt+ ∂iαdxi

)

+
y2

2
σ1̂ ∧ σ2̂

)

∧ dΩ̃3 (3.6)

where

ρ2
1ρ3G2 =

y3

4
∗3 dp (3.7)

ρ̃3G̃2 =
1

4p2
dp ∧ (dt + V ). (3.8)

At this stage we can see that the self-duality relation (2.4) is restored by using the expres-

sions (3.7), (3.8). Note that it is due to (3.2) that we deduced that F2 = 0 and hence have

the vanishing first term in (2.36).
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Complete set of constraints. We have written down the reduced forms of the expres-

sions in the summary of the previous section ((2.34)–(2.46)). We now exhaust all the other

constraints for the above geometries.

First we reexamine the Killing spinor equation. In the previous section, the form of

the spinor ǫ has been partly determined. Explicitly it is

ǫ = f
1

2

2 e
iδγ5γ3τ̂1ǫ0

= ei(λ−
3

4
π)f

1

2

2 e
iδγ5γ3τ̂1ǫc

= ei(λ−
3

4
π)f

1

2 (cosh δ + i sinh δ τ̂3) ǫc (3.9)

where ǫc is the constant spinor in the right hand side of (2.18). In the third line we have

used projection conditions in (2.16). From the expressions for f1, f2 in (2.15), we see that

in our limit f2 vanishes, hence eδ diverges as eδ ∼ 2
(

f1

f2

)1/2
and (3.9) converges to

ǫ ∼ ei(λ− 3

4
π)f

1/2
1 (1 + iτ̂3) ǫc = p−1/8ei(λ− 3

4
π) (1 + iτ̂3) ǫc.

We substitute this into (2.8), (2.9), (2.10), (2.11). Using (2.16) again, we obtain
(

i 6 Ṽ τ̂3 − ig̃γ5τ̂2

)

ǫ =
1

2
p

1

4 (iγ3̄τ̂3 + τ̂1) ǫ

=
1

2
p

1

8 ei(λ− 3

4
π) (iγ3̄τ̂3 + τ̂1) (1 + iτ̂3) ǫc

= 0.

Thus we see that (2.9) and (2.10) are equivalent in our limit. Recall that the sum of (2.9)

and (2.11) divided by ρ1, ρ̃ is solved by the projection conditions for ǫ0 (2.16). Therefore

we consider only (2.8) and (2.9). To reexamine (2.8), we need the expression for the the

spin connection ωµν̄ρ̄ in the four-dimensional subspace. Its non-vanishing components are

shown to be

ωt0̄1̄ = −ωt1̄0̄ =
∂1p

4p
3

2T
, ωt0̄2̄ = −ωt2̄0̄ =

∂2p

4p
3

2T
, ωt1̄2̄ = −ωt2̄1̄ = −1

ωx10̄1̄ = −ωx11̄0̄ =
∂1p

4p3/2T
V1, ωx10̄2̄ = −ωx12̄0̄ =

∂2p

4p3/2T
V1 − p1/2T

ωx20̄1̄ = −ωx21̄0̄ =
∂1p

4p3/2T
V2 + p1/2T, ωx20̄2̄ = −ωx22̄0̄ =

∂2p

4p3/2T
V2

ωx11̄2̄ = −ωx12̄1̄ =
∂2p

4p
+ V1 − 2∂1α, ωx21̄2̄ = −ωx22̄1̄ = −∂1p

4p
+ V2 − 2∂2α

ωy1̄3̄ = −ωy3̄1̄ = − ∂1p

4pT
, ωy2̄3̄ = −ωy3̄2̄ = − ∂2p

4pT
.

Using these expressions and the projection conditions (2.20), we obtain the reduced forms

of (2.8)

∂t

(

p−1/8ei(λ− 3

4
π) (1 + iτ̂3) ǫc

)

= 0
[

∂x1
+

1

8
(∂x1

p)

]

(

p−1/8ei(λ− 3

4
π) (1 + iτ̂3) ǫc

)

= 0
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[

∂x2
+

1

8
(∂x2

p)

]

(

p−1/8ei(λ− 3

4
π) (1 + iτ̂3) ǫc

)

= 0

∂y

(

p−1/8ei(λ− 3

4
π) (1 + iτ̂3) ǫc

)

= 0,

which leads to that λ = const.. We can show that (2.9) reduces to a trivial equation

and gives no new constraint. Thus we see that the Killing spinor equation (2.5) only

determines the phase factors of the Killing spinors and gives no new constraint for the

metric and five-form flux (3.4), (3.5), (3.6), (3.7), (3.8).

Next we consider the Einstein equation (2.47). For convenience, we rewrite the expres-

sions for the metric and five form flux in the following way. First we perform coordinate

transformations t→ t−α, ψ̂ → ψ̂− t where ψ̂ is a coordinate of the squashed three-sphere

(see (2.3)). Note that the second transformation just absorbs the dt accompanied by σ3̂

and does not affect the other components of the metric and five-form flux:

σ
3̂
+ dt→ σ

3̂
,
(

σ
1̂

)2
+
(

σ
2̂

)2 →
(

σ
1̂

)2
+
(

σ
2̂

)2
, σ1̂ ∧ σ2̂ → σ1̂ ∧ σ2̂.

We now see that another S3 metric dΩ̂2 ≡ σ2
1̂

+ σ2
2̂

+ σ2
3̂

appears in the metric (3.5). We

parametrize that S3 with a unit vector in four-dimensional space ŷ = (ŷ1, ŷ2, ŷ3, ŷ4), regard

y as the coordinate of the radial direction and introduce coordinates y1,2,3,4 ≡ yŷ1,2,3,4. We

have the relations

dy2 + y2
(

σ2
1̂

+ σ2
2̂

+ σ2
3̂

)

= dy2
1 + dy2

2 + dy2
3 + dy2

4

ydy ∧ σ3̂ + y2σ1̂ ∧ σ2̂ = ydy ∧ σ3̂ +
y2

2
dσ3̂

= −1

2
R1

αβ (ŷαdy + ydŷα) ∧
(

ŷβdy + ydŷβ

)

= −dy1 ∧ dy2 − dy3 ∧ dy4

(see (A.3), (A.4)). Using these for (3.5), (3.6), we obtain the following expressions for the

metric and five-form flux.

ds2 = − 1√
p

(dt+ V )2 +
√
pT 2

(

dx2
1 + dx2

2

)

+
√
p
(

dy2
1 + dy2

2 + dy2
3 + dy2

4

)

+
1√
p
dΩ̃2

2

Vi =
1

4
ǫij∂j lnT 2

F5 =
1

2
(∂2pdx1−∂1pdx2)∧dy1∧dy2∧dy3∧dy4+

pT 2

2
dt∧dx1∧dx2∧(dy1∧dy2+dy3∧dy4)

+
1

2p2
(∂1pdx1 + ∂2pdx2) ∧ (dt+ V ) ∧ dΩ̃ − 1

2
(dy1 ∧ dy2 + dy3 ∧ dy4) ∧ dΩ̃.

The (t, t) component of (2.47) for this geometry is calculated to be

0 = Rtt −
1

6
FtαβγδF

αβγδ
t

= − 3

4p3T 2

(

(∂1p(x))
2 + (∂2p(x))

2
)

,

which implies that ∂1p = ∂2p = 0, that is, p is constant.

– 13 –



J
H
E
P
0
9
(
2
0
0
8
)
1
0
0

We have shown that the metric and the five form flux are expressed with one constant

parameter p in the following way.

ds2 =− 1√
p

(dt+V )2+
√
pT 2

(

dx2
1+dx2

2

)

+
√
p
(

dy2
1+dy2

2+dy2
3+dy2

4

)

+
1√
p
dΩ̃2

3 (3.10)

F5 =
p

2
T 2dt∧dx1∧dx2∧(dy1∧dy2+dy3∧dy4)−

1

2
(dy1∧dy2+dy3∧dy4)∧dΩ̃3. (3.11)

V =
1

4
ǫij∂j lnT 2dxi. (3.12)

Because p is constant, the remaining known constraint (3.2) is a Liouville equation with a

cosmological constant −16p

(

∂2
1 + ∂2

2

)

ln
(

T (x)2
)

= 8pT (x)2. (3.13)

As we will see below, the solutions of this equation correspond to geometries which are

locally equivalent to the near horizon geometry of intersecting D3-brane systems. This

implies that all of them are solutions of the supergravity and hence no additional constraint

arises from the other components of the Einstein equation (2.47).

AdS3 × S3
× R4. The general solution of (3.13) has been known through the study of

two dimensional surface. On each connected domain in x1x2 space, it is of the form

T 2dudū =
1

p

∂ξ(u)∂̄ξ̄ (ū)
∣

∣ξ(u) − ξ̄ (ū)
∣

∣

2dudū (3.14)

where u ≡ x1 + ix2 and ξ is an arbitrary holomorphic function. From the point of view

of the global structure of the surface, u is the coordinate of a local patch inside the upper

half plane or its quotient by the discrete subgroup Γ of the Möbius group SL(2, R) and ξ

is the local coordinate of the surface with which the metric is expressed in the standard

form ds22 ∝ dξdξ̄/ (Imξ)2. The solutions are classified by the matrices M ∈ Γ which act on

ξ(u) as u goes around fixed points of Γ: 1)|TrM | < 2 (elliptic), 2)|TrM | = 2 (parabolic),

3)|TrM | > 2 (hyperbolic). In this paper, we do not investigate the global structures of the

solutions, and in that case, it is sufficient to consider one solution of (3.13) because the

other solutions are related to it by coordinate transformation at least locally.

Let us consider an example of parabolic solution T 2 = 1/4px2
1 . Then,

from (3.10), (3.11), (3.12), we obtain the following metric and the five-form.

ds2 =− 1√
p

(

dt+
1

2x1
dx2

)2

+
1

4
√
px2

1

(

dx2
1+dx2

2

)

+
√
p
(

dy2
1+dy2

2+dy2
3+dy2

4

)

+
1√
p
dΩ̃2

3

(3.15)

F5 =
1

8x2
1

dt∧dx1∧dx2∧(dy1∧dy2+dy3∧dy4)−
1

2
(dy1∧dy2+dy3∧dy4)∧dΩ̃3. (3.16)

The last two terms of the metric represent R4 and S3 respectively. We can show that the

three-dimensional space spanned by (t, x1, x2) is AdS3. One way to do that is to show

that its metric satisfies three-dimensional Einstein equation with a negative cosmological
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w0 w1 y1 y2 y3 y4 z1 z2 z3 z4
D3 ◦ ◦ ◦ ◦
D3 ◦ ◦ ◦ ◦

Table 1: Configuration of the branes.

constant. This is sufficient to study local issues because the local structures of three-

dimensional gravity are governed by its cosmological constant. Another way is to present

explicit coordinate transformations which lead to standard expressions for AdS3, which

will be more useful for the studies of global issues in the future. One such transformation

is given by

x1 =
z2

1 + x+2

x2 = x− − z2 x+

1 + x+2

t = arctan x+ (3.17)

and this leads to a Poincaré metric of AdS3 with radius 1/p
1

4 .4 Explicitly (3.15), (3.16)

become

ds2 =
1√
p

−dx+dx− + dz2

z2
+

√
p
(

dy2
1 + dy2

2 + dy2
3 + dy2

4

)

+
1√
p
dΩ̃2

3 (3.18)

F5 =
1

4z3
dx+∧dx−∧dz∧(dy1∧dy2+dy3∧dy4)−

1

2
(dy1∧dy2+dy3∧dy4)∧dΩ̃3. (3.19)

The above ten-dimensional space is the near horizon geometry of an intersecting D3-

brane system. To see this, let us consider a stack of D3-branes such that all the branes

extend in 1+1 directions w0, w1 and localize in four directions z1,z2, z3, z4 (overall transverse

space) and the remaining world volume directions are y1, y2 or y3,y4 (relative transverse

space). This configuration is summarized in table 1. The supergravity solution which in a

sense corresponds to this configuration is given as follows (see, for a review [8]).

ds2 = H
− 1

2

1 H
− 1

2

2

(

−dw2
0 + dw2

1

)

+H
− 1

2

1 H
1

2

2

(

dy2
1 + dy2

2

)

+H
1

2

1 H
− 1

2

2

(

dy2
3 + dy2

4

)

(3.20)

+H
1

2

1 H
1

2

2

4
∑

i=1

dz2
i

F5 = −1

2
dw0 ∧ dw1 ∧ dr ∧

(

l1
r3
H−2

1 dy1 ∧ dy2 +
l2
r3
H−2

2 dy3 ∧ dy4

)

(3.21)

− 1

2
dΩ3 ∧ (l2dy1 ∧ dy2 + l1dy3 ∧ dy4)

H1 = 1 +
l1
r2
, H2 = 1 +

l2
r2
. (3.22)

4We can show that the AdS3 written in the global coordinate is also covered by the coordinate system

used in (3.15), (3.16).
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Here r ≡
√

z2
1 + z2

2 + z2
3 + z2

4 is the radial coordinate in the overall transverse space, dΩ3

is the volume form of the unit radius three-sphere orthogonal to it in the same space and

l1, l2 are constants proportional to g
1/2
s α′. The near horizon geometry is given by the limit

α′ → 0 with U = r/α′ fixed. After this limit is taken, (3.20), (3.21) becomes

ds2 = α′
[

√

L1L2U
2
(

−dw2
0 + dw2

1

)

+
√

L1L2
dU2

U2
+
√

L1L2dΩ
2
3

]

+
1

α′√L1L2

(

dy2
1 + dy2

2 + dy2
3 + dy2

4

)

,

F5 = −1

2
Udw0 ∧ dw1 ∧ dU ∧ (dy1 ∧ dy2 + dy3 ∧ dy4) −

1

2
dΩ3 ∧ (dy1 ∧ dy2 + dy3 ∧ dy4) .

where L1,2 ≡ l1,2/α
′ and we have redefined U → √

L1L2U, y1,2 → y1,2/
√
α′L2, y3,4 →

y3,4/
√
α′L1. These expressions coincide with (3.18), (3.19) under the identifications z =

1/U, p = α′−2(L1L2)
−1. This near horizon geometry has 16 supersymmetries and thus

it can be seen that, in the case of the solution (3.15), (3.16), we have 12 enhanced su-

persymmetries in addition to the 4 supersymmetries obtained in the previous section. In

the case of other solutions for the Liouville equation, those enhanced symmetries may be

inconsistent with the global identifications in the upper half plane Imξ > 0, and therefore

we expect that the geometries produced by generic solutions are less supersymmetric than

the above geometry produced by a solution covering the whole of the upper half plane.

Since the geometries described by (3.10), (3.11), (3.12), (3.13) have turned out to be

equivalent to the near horizon geometries of intersecting D3-brane systems, it is valuable

to present here the expressions for some T-dual geometries in our coordinate system. First

we write down the expression for a gauge potential A4 of the five form flux F5 in (3.11).

Noting (3.12), (3.13) (or (3.3)), we obtain a solution of the equation F5 = dA4

A4 =
1

4
dt ∧ V ∧ (dy1 ∧ dy2 + dy3 ∧ dy4) −

1

2
(dy1 ∧ dy2 + dy3 ∧ dy4) ∧O (3.23)

where O is a two-form potential of dΩ̃3.

To take T-duals of (3.10), (3.23), we need the value of the dilaton φIIB. We set it equal

to 0 because in that case we do not have to care about the difference between Einstein

frame and string frame for the above geometries. Compactifying R4 to T 4 and taking

T-dual in the direction y1, we obtain the following type IIA geometries in string frame.

ds2 =− 1√
p

(dt+V )2+
√
pT 2

(

dx2
1+dx2

2

)

+
1√
p
dy2

1+
√
p
(

dy2
2+dy2

3+dy2
4

)

+
1√
p
dΩ̃2

3 (3.24)

A3 = dt ∧ V ∧ dy2 − 2dy2 ∧O, φIIA = −1

4
ln p (3.25)

V =
1

4
ǫij∂j lnT 2dxi,

(

∂2
1 + ∂2

2

)

ln
(

T (x)2
)

= 8pT (x)2.

These are locally equivalent to the near horizon geometries of D2-D4 systems. Further, tak-

ing T-dual in the direction y2, we obtain the following type IIB geometries in string frame.

ds2 =− 1√
p

(dt+V )2+
√
pT 2

(

dx2
1+dx2

2

)

+
1√
p

(

dy2
1+dy2

2

)

+
√
p
(

dy2
3+dy2

4

)

+
1√
p
dΩ̃2

3

(3.26)
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A2 = dt ∧ V − 2O, φIIB = −1

2
ln p (3.27)

V =
1

4
ǫij∂j lnT 2dxi,

(

∂2
1 + ∂2

2

)

ln
(

T (x)2
)

= 8pT (x)2.

These are locally equivalent to the near horizon geometries of frequently-discussed D1-D5

systems.

Wick rotation. Finally, since we have understood the basic properties of the geometries

with the S3 × S3 factor, we comment on the possibility that there is a connection to the

results of other works. Liouville theory has appeared also in other contexts as in [9, 10].

Our result is different from theirs in that (3.13) is a Euclidean Liouville equation.

Interestingly, as we will see below, we can find analytic continuations to Minkowskian

Liouville equations such that the resultant metrics and fluxes are again AdS3 × S3 × R4

solutions of the same supergravity.

Let us recall the form of the general solution of the Liouville equation (3.14). We can

always take ξ = x′1 +ix′2 as coordinates of (x1, x2) space, and because ξ(u) is a holomorphic

function, the conformal form of the metric in two-dimensional space gij ∼ T 2δij is not

affected by this coordinate transformation. Thus we see that the metric and five-form flux

expressed in the coordinate ξ are also in our ansatz and satisfy the same constraints. The

difference from (3.15), (3.16) is just that x1 and x2 are interchanged and some signs are

flipped. Explicitly, the metric and five-form flux are given by

ds2 = − 1√
p

(dt + V )2 +
1

4
√
px′22

(

dx′21 + dx′22
)

+
√
p
(

dy2 + y2dΩ̂
2
3

)

+
1√
p
dΩ̃2

3

F5 = −1

4
dt ∧ dV ∧ (dy1 ∧ dy2 + dy3 ∧ dy4) −

1

2
(dy1 ∧ dy2 + dy3 ∧ dy4) ∧ dΩ̃3

V = − 1

2x′2
dx′1.

From this we see that the Wick-rotations x′1 → ±ix′1 lead to that V turns into ±iV ,

T 2 = 1/4px′22 is unchanged and (3.13) turns into a Minkowskian Liouville equation. To

keep the metric real, we need another Wick rotation, t → ±it. After this double Wick

rotation, the five-form flux remains real, and hence these metric and the flux are again

a solution of IIB supergravity. The coordinate transformation in the three dimensional

subspace which leads to the Poincaré metric (In the case of (3.15), (3.16) it was (3.17).)

can be used with the corresponding Wick rotations x′+,− → ±ix′+,−. Thus we see that

this Wick rotated geometry is again an AdS3 ×S3 ×R4 solution and it is the near horizon

geometry of an intersecting D3 brane system.

The above Wick rotations work also for the cases of T-dualized geome-

tries (3.24), (3.25), (3.26), (3.27). The appearance of Liouville theory for every slice of

constant t may lead to some understanding of D1-D5 systems in the future.

4. Conclusion

In this paper, we have shown that a new differential equation should be imposed on the
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resultant controlling functions m,n, p, T of [5], and discussed the limit n = 0,m = 1/y2, in

which the new equation plays crucial roles to obtain some properties of the geometries.

Among the properties recognized in this paper, the appearance of Liouville theory in

D1-D5 systems seems to be related most directly to other works. In [9, 10], it has been

shown that some boundary dynamics in AdS3 are related to Liouville theory. In [11],

properties possessed by the solutions of Liouville equation have been found in supergravity.

Investigating the precise relations of our result to those works will be our next task. The

interesting point is that, in contrast to them, we have obtained Liouville equation itself in

the bulk.

Next of interest is in the possibility that our results may relate the spectra of different

conformal field theories. The world volume theories on intersecting D3-branes have been

constructed in [12] and those of D1-D5 systems are often discussed. Although we have

not investigated how the global structures of the two-dimensional surfaces described by

the Liouville theory are related to those of the ten-dimensional geometries, we have shown

that those structures are common to the T-dualized geometries. This implies that, if there

exists a solution which is regarded as an excited state in the near horizon geometry of one

configuration of D-branes, we can map it to those of T-dualized systems. This kind of

duality relation in the gravity sides may lead to new understandings about the relations

between the two different dual field theories.

Another of interest is in the relation between AdS3 × S3 × R4 and AdS5 × S5. In

LLM, AdS5 × S5 is described by a circular droplet with its radius equal to the square of

that of the AdS5, and the limit of large radius or small radius corresponds to the limit

n = p = 0,m = 1/y2 in our geometries, which can also be considered as a large radius

limit of AdS3. More generally, for any droplet configuration of LLM, this geometry can be

obtained by looking closely around any point on the y = 0 plane. Although this is a singular

geometry and the validity of supergravity approximation has to be discussed, it might imply

something new about the behaviors of N = 4 SYM in the corresponding limits.

Acknowledgments

I specially thank T. Yoneya for much advice during this work and many instructive com-

ments on the manuscript. I would also like to thank Y. Aisaka, T. Matsuda, A. Miwa,

A. Tsuji and N. Yokoi for useful discussions. This work was supported in part by JSPS

Research Fellowships for Young Scientists.

A. Building blocks of squashed three-spheres

In this section, we explain the relation between the unit vector in four-dimensional space

used in section 3 and building blocks used for defining the metrics of squashed three-spheres.

Let us parametrize the unit vector in four-dimensional space as follows.

ŷ1 = cos
θ

2
cos

ψ + φ

2

ŷ2 = − cos
θ

2
sin

ψ + φ

2

– 18 –



J
H
E
P
0
9
(
2
0
0
8
)
1
0
0

ŷ3 = − sin
θ

2
cos

ψ − φ

2

ŷ4 = sin
θ

2
sin

ψ − φ

2
.

In this parametrization, the metric of S3 is

ds2 = dŷ2
1 + dŷ2

2 + dŷ2
3 + dŷ2

4

=
1

4

(

dθ2 + dφ2 + dψ2 + 2cos θdφdψ
)

. (A.1)

To define the metric of squashed three-spheres, we consider SU(2)L and SU(2)R gen-

erators,

L1 =











−1

1

1

−1











, L2 =











−1

−1

1

1











, L3 =











1

−1

1

−1











, (A.2)

R1 =











−1

1

−1

1











, R2 =











−1

1

1

−1











, R3 =











−1

−1

1

1











. (A.3)

We can construct left-invariant one-forms from SU(2)R generators

R1
αβ ŷαdŷβ = −σ3̂ (A.4)

R2
αβ ŷαdŷβ = −σ1̂

R3
αβ ŷαdŷβ = σ2̂.

The metrics of SU(2)L invariant squashed three-spheres are given by

ds2 = rij
(

Ri
αβ ŷαdŷβ

)

(

Rj
γδ ŷγdŷδ

)

where rij is an arbitrary symmetric tensor. We can define the metrics of SU(2)R invariant

squashed three-spheres by using the SU(2)L generators (A.2).

ds2 = lij
(

Li
αβ ŷαdŷβ

)

(

Lj
γδ ŷγdŷδ

)

.

If rij = lij = δij , the two metrics coincide and are equal to (A.1), and each symmetry is

enhanced to SO(4) = SU(2)L × SU(2)R.
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